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Abstract—Evolution strategies are known to be powerful stochastic metaheuristics for the solution of complex single-objective
engineering problems. In this paper a fuzzy weighting of objectives combined with niching techniques is used within the framework
of a classical evolution strategy in order to make the optimizer suitable for the solution of multiobjective problems. The proposed
approach is described and its performance is compared with a Pareto-enabled Differential Evolution technique on an eddy current
shielding benchmark problem.
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I. INTRODUCTION

Evolution Strategies (ES) rely on a number of simplified
features of biological evolution like reproduction, mutation,
competition and selection. Classical Evolution Strategies (ES)
are able to find a good local if not the global solution of single-
objective optimization problems. If more objectives have to be
targeted simultaneously it has been shown that it is advanta-
geous to merge all objectives into a single value using fuzzy
membership functions and appropriate inference rules inside
a classical ES [1]. However, introducing a niching technique
it is possible to detect, store and postprocess additional local
solutions within a single optimization run [2]. This results,
in general, in several solutions which are very close to a
limited portion of the Pareto front depending on the weights
used in the respective inference rule. Different weighted sums,
however, cover different parts of the Pareto front, which
has already been shown using a sequential approach [3]. To
evaluate a larger part of the Pareto front within a single
optimization run it is therefore suggested to process more
than one objective function with variable weights in parallel
threads which are readily provided by modern multicore CPU
architectures. In order to further reduce the number of function
calls, configurations from one thread can become candidate
configurations in another thread. Furthermore, all used con-
figurations and the corresponding solutions are stored in an
archive. If one of the archived configurations is within a certain
range of a new candidate configuration, its objective function
values are re-used, which further improves the efficiency of
the proposed method.

II. PARALLEL (µ/ρ, λ) EVOLUTION STRATEGY

In the proposed implementation, in contrast to more clas-
sical versions of ES, several populations following different
objective functions are evolving in parallel. Only a certain
percentage of individuals for the next generation of a single
thread is set up in the classical way (recombination of parental
configurations and mutation), while the rest is taken from all
other threads and directly inserted into the population without

any computational cost. Additionally, all newly generated con-
figurations are compared against all configurations produced
so far. If a newly created one is located very close to such an
archived configuration, it will be replaced by the old values
thus saving computational effort. Finally, this parallel version
of ES yields one optimal solution for each thread and its
corresponding objective function.

III. FUZZY WEIGHTING OF OBJECTIVES

After all objectives have been evaluated for all members
of the population, the current value of each objective of a
single configuration is normalized to values between 0 and
1 (providing a so-called level of satisfaction) by means of
appropriate types of nonlinear fuzzy membership functions [1].
Then a weighted sum of all levels of satisfaction is computed
in order to assess the quality of the configuration and to
make implicit or explicit selection (two main operators of
ES) possible. Additionally, using different weights one can
put more or less emphasis on one or the other objective. The
weighting is in this case facilitated by the implicit scaling
provided by the fuzzy membership functions.

IV. CLUSTER SENSITIVE RECOMBINATION

To find more than one local solution within the individual
threads each population is clustered into niches. The following
recombination is performed with higher probability within a
niche than beyond niche boundaries. As soon as an isolated
niche is identified, its best solution is stored. The aproximate
number κ of niches can be automatically estimated from
several cluster metrics [3]. This enables the [κ(µ/ρ, λ)] ES
to adjusts its population size dynamically and, in general,
to decrease it gradually. In a post processing step all these
solutions are evaluated and clustered again. The result is a
more or less large number of local solutions which are in
general located very close to (or even on) the Pareto optimal
front. Furthermore, numerical experiments have demonstrated
that this kind of recombination results in the [κ(µ/ρ, λ)] ES
having a more global convergence behaviour than the (µ/ρ, λ)
ES [3].



V. MULTIOBJECTIVE DIFFERENTIAL EVOLUTION

Differential Evolution (DE) [4] is an evolutionary
population-based optimization metaheuristic which is char-
acterized by a particular method for the generation of new
candidate solutions and by the use of a very greedy selection
scheme. Furthermore, the algorithms lends itself very well
to the implementation of self-adaptive features so that the
resulting methods are essentially parameter-free. Multiobjec-
tive version of DE can be very easily constructed with slight
modifications to the underlying single objective algorithm,
following for example the ideas proposed in [5]. In such
approaches at each generation the original population is sub-
ject to the classical DE mutation and crossover operators and
the 2n individuals of the original population and the one
resulting from mutation and crossover are subject to non-
dominated, least-crowded sorting according to the NSGA-
II [6] philosophy and the best n individuals are promoted
to the next generation. With such minor modifications DE
becomes capable of finding solutions on the Pareto front while
preserving its extremely greedy character. DE is used in this
paper to provide an independent method for the computation
of the Pareto front.

VI. NUMERICAL RESULTS

The chosen benchmark problem refers to the optimization
of a simplified magnetic shunting configuration of a power
transformer. The geometry of the problem is sketched in Fig.
1 together with the material parameters used in the model.
The problem is characterized by six box-constrained geometric
dimensions, namely the total height h of the shunts in the range
[20,100] mm and the widths w of the individual layers in the
range [50,280] mm. The problem consists in minimizing the
eddy current losses in the tank while at the same minimizing
the area (volume) of the magnetic shunts.
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Fig. 1. Geometry and degrees of freedom of the benchmark problem.
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Fig. 2. Comparison of DE and various Fuzzy-ES wight combinations

Optimization results, shown in Fig. 2, demostrate that the
proposed approach is indeed capable of finding groups of
solutions which well approximate the true Pareto front, which
is computed with DE.

In the extended version of the paper a more complicated
3-objective version of the same problem will be presented.
This extended version of the benchmark will include a further
copper shielding layer.

VII. CONCLUSIONS

This paper explores the possibility of modifying a standard
Evolution Strategy algorithm in order to efficiently solve
multiobjective optimization problems without resorting to the
Pareto approach. The algorithm features a fuzzy weighting of
objectives and niching strategies and makes use of the multi-
threading features of modern microprocessor architectures. In
the extended version of the paper all algorithmic details will
be presented in detail and a more complicated version of the
benchmark will be solved.
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